+1 800 783 4636

Super CitriMax®

Gene Expression, Volume 11, Numbers 5-6, 2003, pp. 251-262(12)

Body Weight and Abdominal Fat Gene Expression Profile in Response to a Novel Hydroxycitric Acid-Based Dietary Supplement



Obesity is a global public health problem, with about 315 million people worldwide estimated to fall into the WHO-defined obesity categories. Traditional herbal medicines may have some potential in managing obesity. Botanical dietary supplements often contain complex mixtures of phytochemicals that have additive or synergistic interactions. The dried fruit rind of Garcinia cambogia, also known as Malabar tamarind, is a unique source of (−)-hydroxycitric acid (HCA), which exhibits a distinct sour taste and has been safely used for centuries in Southeastern Asia to make meals more filling. Recently it has been demonstrated that HCA-SX or Super Citrimax, a novel derivative of HCA, is safe when taken orally and that HCA-SX is bioavailable in the human plasma as studied by GC-MS. Although HCA-SX has been observed to be conditionally effective in weight management in experimental animals as well as in humans, its mechanism of action remains to be understood. We sought to determine the effects of low-dose oral HCA-SX on the body weight and abdominal fat gene expression profile of Sprague-Dawley rats. We observed that at doses relevant for human consumption dietary HCA-SX significantly contained body weight growth. This response was associated with lowered abdominal fat leptin expression while plasma leptin levels remained unaffected. Repeated high-density microarray analysis of 9960 genes and ESTs present in the fat tissue identified a small set (∼1% of all genes screened) of specific genes sensitive to dietary HCA-SX. Other genes, including vital genes transcribing for mitochondrial/nuclear proteins and which are necessary for fundamental support of the tissue, were not affected by HCA-SX. Under the current experimental conditions, HCA-SX proved to be effective in restricting body weight gain in adult rats. Functional characterization of HCA-SX-sensitive genes revealed that upregulation of genes encoding serotonin receptors represent a distinct effect of dietary HCA-SX supplementation.


Recent Posts

Sorry, the comment form is closed at this time.

Terms of Use

This is business-to-business information intended for food and supplement producers, and is not intended for the final consumer. This information is based on our own research and development work and is, to the best of our knowledge, reliable. However, Lonza does not assume any liability or risk involved in the use of this information, as conditions of use are beyond our control. Manufacturers should check local regulatory status of any claims according to the intended use of their products.

Privacy and Cookies Notice


Please note that Lonza has updated its Privacy Policy. By visiting our website or using services provided by Lonza, you are accepting the practices described in the Privacy Policy.


We also use cookies on our websites. Cookies allow us to give you the best browsing experience and help us to understand how you use our site. You can disable cookies but parts of our website may not work. Please read our updated Cookies Policy for information about which cookies we use and the information we collect. By continuing to use this website, you agree that we may store and access cookies on your device.


By clicking "I Agree", you confirm that you are above the age of 16, that you have read and understood the Privacy Policy and the Cookies Policy, and that you agree to the collection, use and processing of your Personal Information by Lonza in accordance with said policies.